Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties.

نویسندگان

  • Ian A Sigal
  • John G Flanagan
  • Inka Tertinegg
  • C Ross Ethier
چکیده

Biomechanical factors acting within the optic nerve head (ONH) likely play a role in the loss of vision that occurs in glaucoma. In a companion paper (Sigal et al. 2008), we quantified the biomechanical environment within individual-specific ONH models reconstructed from human post mortem eyes. Our goal in this manuscript was to use finite element modeling to investigate the influence of tissue material properties on ONH biomechanics in these same individual-specific models. A sensitivity analysis was carried out by simulating the effects of changing intraocular pressure on ONH biomechanics as tissue mechanical properties were systematically varied over ranges reported in the literature. This procedure was repeated for each individual-specific model described in the companion paper (Sigal et al. 2008). The outcome measures of the analysis were first and third principal strains, as well as the derived quantity of maximum shear strain, in ONH tissues. Scleral stiffness had by far the largest influence in ONH biomechanics, and this result was remarkably consistent across ONH models. The stiffnesses of the lamina cribrosa and pia mater were also influential. These results are consistent with those obtained using generic ONH models. The compressibility of the pre-laminar neural tissue influenced compressive and shearing strains. Overall, tissue material properties had a much greater influence on ONH biomechanics than did tissue geometry, as assessed by comparing results between our individual-specific models. Material properties of ONH tissues, particularly of the peripapillary sclera, play a dominant role in the mechanical response of an ONH to acute changes in IOP and may be important in the pathogenesis of glaucoma. We need to better understand inter-individual differences in scleral biomechanical properties and whether they are clinically important.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma.

Scleral thickness, especially near the optic nerve head (ONH), is a potential factor of interest in the development of glaucomatous optic neuropathy. Large differences in the dimensions of the sclera, the principal load-bearing tissue of the eye, have been observed between individuals. This study aimed to characterize the effects of these differences on ONH biomechanics. Eleven enucleated human...

متن کامل

Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry.

Glaucoma, the second most common cause of blindness worldwide, is an ocular disease characterized by progressive loss of retinal ganglion cell (RGC) axons. Biomechanical factors are thought to play a central role in RGC loss, but the specific mechanism underlying this disease remains unknown. Our goal was to characterize the biomechanical environment in the optic nerve head (ONH)--the region wh...

متن کامل

Biomechanics of the optic nerve head.

Biomechanical factors acting at the level of the lamina cribrosa (LC) are postulated to play a role in retinal ganglion cell dysfunction and loss in glaucoma. In support of this postulate, we now know that a number of cell types (including lamina cribrosa cells) are mechanosensitive. Here we briefly review data indicating cellular stretching, rate of stretching and substrate stiffness may be im...

متن کامل

Scleral anisotropy and its effects on the mechanical response of the optic nerve head.

This paper presents a computational modeling study of the effects of the collagen fiber structure on the mechanical response of the sclera and the adjacent optic nerve head (ONH). A specimen-specific inverse finite element method was developed to determine the material properties of two human sclera subjected to full-field inflation experiments. A distributed fiber model was applied to describe...

متن کامل

Reconstruction of human optic nerve heads for finite element modeling.

PURPOSE Glaucoma is a common ocular disease whose pathogenesis is hypothesized to involve biomechanical damage to optic nerve tissues. Here we describe a method for the construction of patient-specific models that can be used to evaluate the biomechanical environment within the optic nerve head. We validate the method using a virtual eye, and demonstrate its use in computing optic nerve head bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomechanics and modeling in mechanobiology

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2009